Le stage de Cachan 2014 au jour le jour

Jeudi 23 Octobre

Tout se passe bien malgré de petits contretemps (la porte du réfectoire fermée à  clef à  l’heure du petit déjeuner, le retard d’un enseignant). Pour ce dernier jour de combinatoire, les débutants ont étudié la récurrence, avec Félix Lequen et Thomas Budzinski, pendant que les avancés voyaient le principe des tiroirs et les jeux et stratégies, avec Margaret Bilu et Pierre Bornsztein. Le soir, soirée libre : ce n’est qu’à  minuit que j’ai dit aux élèves encore debout de se coucher. Car demain, ils auront trois heures de test le matin, de 9 h à  12 h, corrigé en début d’après-midi. Puis, ils partiront vers 16 h, avec le polycopié du stage. Six d’entre eux seront raccompagnés jusqu’à  la gare de Lyon.

La bibliothèque Animath a été davantage consultée que d’habitude.

Le dîner au réfectoire.

Mercredi 22 Octobre

Trois intervenants pour ce second jour de cours : Jean-Louis Tu, Vincent Jugé et François Lo Jacomo. Le matin, géométrie, théorème de l’angle inscrit et, pour les avancés, exercices tirés de l’Olympiade Balkanique Junior, la compétition à  laquelle certains d’entre eux seront candidats. L’après-midi, combinatoire : principe des tiroirs et problèmes de pavage pour les débutants, dénombrement (double comptage) pour les avancés.

Un groupe d’élèves tente de paver un triangle avec des sphinx.

Le soir, une petite conférence de François Lo Jacomo sur les nombres irrationnels, en particulier racine carrée de 2. Quelques avions en papier pendant la conférence, un peu de bruit dans les chambres, à  23 h 42 notamment, mais pas de vrai problème.

Mardi 21 Octobre

Premier jour de cours : les élèves prennent connaissance du groupe dans lequel ils sont, puis géométrie pour tout le monde. Chasse aux angles, rotations… Le matin avec François Lo Jacomo et Jean-François Martin, l’après-midi avec Guillaume Conchon-Kerjan et Thomas Budzinski. La bibliothèque est placée dans la salle du goà»ter, et bon nombre d’élèves la remarquent et la consultent. Le soir, une rapide présentation d’Animath et des Olympiades Internationales. Et à  l’heure de se mettre au lit, la tournée des chambres, qui a duré un peu plus longtemps que la veille.

Le groupe des avancés, avec Thomas Budzinski

Le groupe des débutants, avec Guillaume Conchon-Kerjan

L’heure du goà»ter…

Lundi 20 Octobre

Quelques soucis de connexion internet ce lundi, mais finalement tout est rentré dans l’ordre.

Tous les stagiaires sont bien arrivés. En métro ou en voiture, entre 9 h et 12 h, accueillis par François Lo Jacomo. Certains sont partis de chez eux en voiture à  4 h ou 5 h du matin, de Grenoble ou Valence. D’autres sont venus par le train, six d’entre eux ont été accueillis Gare de Lyon par Félix Lequen. Dès leur arrivée, quelques exercices d’échauffement les attendaient. Puis, à  midi, inauguration du stage, et tout de suite après le repas, le test initial qui aide à  les répartir en deux groupes (débutants et avancés). Finalement 13 élèves sont dans le groupe avancé et 18 dans le groupe débutant. Après le dîner, correction du test.

Dès l’arrivée, quelques exercices d’échauffement…

Comme l’an dernier, les horaires sont : 8 h, petit déjeuner, 9 h à  12 h 30 cours avec une pause au milieu, 12 h 30 déjeuner, 14 h à  17 h 30 cours avec une pause goà»ter au milieu (le goà»ter était plus copieux que l’an passé, néanmoins ce lundi presque tout a été consommé), 19 h dîner. Coucher au plus tard à  23 h : de 23 h à  23 h 15, François Lo Jacomo a fait le tour des chambres pour faire accélérer les retardataires, mais globalement les horaires étaient respectés. Mardi matin, à  8 h, nouvelle inspection des chambres, deux élèves ne s’étaient pas réveillés.

Voici la liste des stagiaires :

Prénom NOM classe département
Vincent BAIZEAU 4 25
Xavier BANOS 3 71
Pierre-Alexandre BAZIN 3 75
Maxime BENRUBI 3 78
Kenzo BOUDIER 5 06
Vincent BRAUN 3 78
Justin CAHUZAC 5 78
Alexe௠CARMOY 2 76
Adrien CHAMUSSY 4 38
Tristan DESPLANCHES 3 78
Georges DUTHIL 3 60
Pierre-Marie ESMENJAUD 3 26
Thomas FUSELLIER 3 71
Linda GUTSCHE 2 38
Yakob KAHANE 2 75
Tom KALIS 3 38
Rémi LESBATS 2 75
Joséphine MATTATIA 4 75
Timoté MOREAUX 4 25
Hugo OLIVIER 3 50
Imène OUZINEB 2 78
Hugo PANCHAUD 2 75
Alexandre POLO 3 75
Romain POYET 4 69
Pierre PUZO 4 01
Juraj ROSINSKY 3 01
Long Van TRAN HA 2 75
Julien VERON 2 31
Léo WANG 3 38
Emilie YING 3 78
à¯lan ZYSMAN 4 38

Suivez les Olympiades Balkaniques 2012 au jour le jour!

Vous trouverez les photos illustratrices à  ce lien et une vidéo officielle ici.

BMO – Jour 0 (Jeudi 26 avril)

La première journée devait nous amener à  Antalya en Turquie, o๠se déroule la 29ème Olympiade Balkanique de Mathématiques. C’est souvent cette journée de départ qui est souvent parsemée d’embà»ches inattendues… Arthur, Louise, Matthieu, Sébastien, Victor et moi-même avions rendez-vous à  Paris afin de rejoindre l’aéroport d’Orly, o๠nous devions retrouver Séginus, venu depuis une contrée lontaine en avion la veille. Claude, grand leader de notre équipe, prenait un autre vol plus matinal (les différents leaders sont complètement séparés des autres participants jusqu’au jour de l’épreuve, car ils participent à  l’élaboration des sujets). Les différents réveils avaient visiblement bien fonctionné, et tout le monde s’est retrouvé au point de rendez-vous, en avance (le RER B nous a épargné pour cette fois-ci, gloire à  lui). Arrivés à  Orly sans soucis et quelques coinches plus tard, nous avons retrouvé Séginus, puis avons déposé avec succès les bagages. Nous avions un vol de Paris pour Istanbul, puis un vol d’Istanbul pour Anatalya, avec un temps de correspondance d’une heure trente. à€ l’enregistrement, nous avons reçus les cartes d’embarquement pour le premier vol, mais pas pour le deuxième: on nous a informé que ceux-là  devaient être imprimés à  Instanbul (louche, n’est-ce pas?).

Le premier vol est arrivé avec trente minutes de retard à  Istanbul (vive les embarquements par bus), ce qui ne nous laissait encore une heure pour attraper notre second vol. Nous avons d’abord dà» faire la queue pour imprimer les cartes d’embarquement du second vol. Après quelques minutes dans la queue intitulée “passagers en transit”, un agent de sécurité, après s’être informé de notre destination finale, nous a révelé qu’il ne fallait surtout pas rester dans cette queue car les passages des vols intérieurs devaient aller directement au contrà´le des passeports. Après une plutà´t longue file, nous voilà  sur la terre turque… sauf Séginus! En effet, de nationalité belge, les agents ont exigé qu’il présente un visa (ils n’ont rien voulu savoir des investigations poussées de Séginus sur la toile, montrant que les citoyens belges n’ont pas besoin de visa). Séginus a dà» rembrousser chemin et se rendre au stand “visa”. Quelques minutes d’incertitude plus tard, Séginus réapparaît triomphant, brandissant son visa, et on lui octrà´it le droit de fouler le sol turque. Il nous reste alors une demi-heure avant le décolage (l’embarquement venait juste de commencer). Nous suivons les flèches indiquant “vols intérieurs”, et débouchons sur une trèèès longue file d’attente pour passer les portiques de sécurité… En implorant pitié et pardon auprès d’un agent, nous réussissons à  nous insérer tant bien que mal au milieu de la marée humaine, qui avance heureusement plutà´t rapidement. à€ l’issue du passage des portiques, il nous reste vingt minutes avant le décolage, et les panneaux indiquent “last call”. Prenant nos sacs à  deux mains, nous engageons un sprint effrené à  travers l’aéroport (courir, tourner à  gauche, courir, descendre, courir, tourner à  gauche, courir au fond…), qui nous permet d’arriver à  temps! Ouf! Nous avons finalement attendu au sol quarante-cinq minutes dans l’avion pour qu’il puisse avoir l’autorisation de décoler (pour un vol d’une heure)…

L’étape générale cruciale de la première journée consiste à  récupérer tous les bagages. Tout le monde a parié que ce serait le bagage de Matthieu, qui était le bagage le plus petit, qui serait perdu (finalement c’est celui qui est arrivé en premier). à€ Antalya, nous trouvons deux différents tapis: un pour les bagages des passagers dont le vol était direct, et l’autre pour les passagers qui étaient en transit. Il va sans dire que ces derniers étaient quatre fois plus nombreux, mais que la longueur de leur tapis étaiet quatre fois plus petite… Tant bien que mal, nous extirpons nos bagages de la foule. Cependant, Louise remarque que la serrure de sa valise a été cassée, et ne s’ouvre plus! Nous nosu dirigeons donc au bureau des réclamations. Après déposition du dossier, on nous dit qu’on s’est trompé de porte (on s’était adressé à  la mauvaise compagnie aérienne…). Nous toquons donc à  cà´té, et répétons les opérations. Entre temps, en forçant un chouilli, nous réussissons à  ouvrir la serrure, ce qui rassure Louise. Nous sommes alors rejoints par Victor ainsi que notre guide Banu (étudiante en politique internationale), qui ne retrouve plus sa trousse (probablement oubliée dans un avion). Victor dépose à  son tour un dossier, et quand Banu explique les raisons de notre voyage, la personne (un peu blasée) prenant la déposition change d’un coup de physionomie et nous dit que c’est un honneur de nous rencontrer et qu’elle fera tout ce qui est en son pouvoir pour retrouver la trousse de Victor!

Ayant tous nos bagages (une trousse exceptée), nous nous dirigeons vers les bus, sous les regards des équipes que nous avons fait attendre une demi-heure (au moins). L’endroit o๠nous allions était un mystère entier: même sur le groupe Facebook des BMO à  Antalya, les organisateurs gardaient le lieu secret! Nous arrivons finalement à  l’hà´tel (ou tout autre mot pouvant désigner un splendide complexe sur 300 000 m^2) vers 23h (sans avoir dîné):

S’ensuit une assez longue étape d’accueil avec des formulaires à  remplir, des passeports à  donner, des formulaires à  re-remplir, des passeports à  re-donner. Une fois que toutes les équipes venues par le même bus avaient leurs clés, nous nous dirigeons vers nos chambres. Auparavant, chaque personne a reçu un sac à  dos contenant une myriade de petits trésors (badge, brosse à  dent, dentifrice, clé USB, huile d’olive, stylos, blocs notes, t-shirts,…). Finalement, à  minuit et demie, nous dînons :)! Nous finissons pile au moment de la fermeture du restaurant, et partons vite nous coucher!

BMO – Jour 1 (Vendredi 27 avril)

La journée commence un petit-déjeuner fastueux (en goà»tant chaque met, on pourrait tenir une semaine), et la matinée est occupée par la cérémonie d’ouverture, qui se déroule dans une salle de bal d’un autre complexe. Les élèves, guides et deputy leaders s’installent en premier, puis arrivent les team leaders, qui s’assoient bien à  part: ils connaissent déjà  l’énoncé des épreuves (nous n’avons malheureusement pas réussi à  décripter les différents angles d’inclinaison de la main de Claude qui nous saluait). La cérémonie d’ouverture, assez courte et sans défilé des équipes, comportait quelques discours et plusieurs danses traditionnelles turques.

Nous rentrons vers midi à  notre hà´tel, et avec Banu (notre guide, je rappelle), nous donnons aux élèves quelques précisions techniques sur le déroulement de l’épreuve du lendemain. L’après-midi était laissée libre, et les élèves en ont profité pour d’abord faire des maths pour ensuite migrer vers la plage (batailles de coussins puis maths en hamacs en perspective), le tout sous surveillance de Banu: les guides ont reçu des instruction très strictes: avant l’épreuve, tous les élèves d’une équipe doivent rester groupés et accompagnés de leur guide.

Entre temps, nous avions appris que quelqu’un s’était cassé la jambe sur la plage, mais après enquête minitieuse, il ne s’agissait pas d’un participant à  l’olympiade. Le dîner ayant été assez long, les élèves sont rentrés tout de suite après dans leurs chambres afin de se reposer pour l’épreuve du lendemain.

BMO – Jour 2 (Samedi 28 avril)

La matinée de cette journée d’épreuve était minutieusement programmée: les élèves devaient être présents devant la salle d’examen (située juste à  cà´té de nos chambres !) à  8h15 précises. à€ 8h30 précises, les équipes commençaient à  entrer une par une; à  9h précises l’épreuve commençait, et à  13h30 précises elle se terminait. L’équipe française avait rendez-vous à  7h42 précises pour aller prendre un petit déjeuner bien copieux pour pouvoir surmontrer 4h30 d’effort cérébral intense. à€ 8h07 précises, le petit déjeuner était terminé, et avec Banu nous avons accompagné les élèves devant la salle d’examen. L’heure était à  la vérification de ce que les élèves allaient apporter dans l’enceinte sacrée de l’épreuve. D’abord les sacs ont été interdits, puis les effaceurs, puis les tippex et enfin les équerres. Après d’à¢pres négociations et des travaux pratiques démontrant que les effaceurs et tippex pouvaient être considérés comme du matériel d’écriture, ceux-ci ont été autorisés. En revanche, les équerres sont restées formellement interdites (bien qu’elles soient autorisées aux olympiades internationales). Au cas oà¹, je montre aux élèves comment construire une équerre artisanale (ce qui leur a peut-être servi, car l’exercice 1 nécessitait la construction de plusieurs droites perpendiculaires…). Manque de chance, à  8h30, c’est l’équipe française, occupée à  trier leurs affaires, qui a été appelée en premier et n’a pas pu se présenter à  temps. Finalement, nos élèves ont été autorisés à  entrer en dernier, vers 8h50.

De mon cà´té, je devais retrouver Claude à  9h pour la réunion du jury. Ce n’était en fait pas vraiment une réunion: pendant la première demi-heure, les élèves sont autorisés à  poser des questions par écrit au jury, qui leur répond le plus succintement possible après avoir convenu ensemble d’une réponse. Je file donc poser les sacs des élèves (qui n’ont pas eu le droit de les prendre avec eux, sà»rement à  juste titre car ils contenaient les cours de Bodo) dans ma chambre, et rejoins Claude dans la salle de réunion. Plusieurs élèves français, membres de l’équipe remplaçante, devaient plancher sur les mêmes sujets en France en étant surveillés. Claude me transmet donc le précieux fichier pdf contenant les énoncés, et je tente d’envoyer les sujets en France grà¢ce à  une piètre connexion internet, sans succès… Je sors donc de la salle et me dirige au nez vers l’émetteur wifi le plus proche. Dix minutes plus tard, je réussissais enfin à  envoyer le sujet en France, et rejoignais la salle du jury o๠arrivaient les questions des candidats (rien de particulièrement croustillant, si ce n’est plein de questions de type “Is 0 positive ?”, ou un candidat malicieux demandant “Faut-il démontrer l’inégalité de Schur ou de Muirhead?”), espérant tirer une indication sur l’inégalité à  utiliser en fonction de la réponse.

La session des questions étant terminée à  9h30, Claude part à  la conquête de sa chambre (sans succès, elle n’était pas prête), et de mon cà´té je cherche les solutions des exercices 1 et 4 (nous avions convenu avec Claude que je m’occupais de ces deux exercices-là , et que les exercices 2 et 3 lui étaient destinés). L’exercice 1 est un exercice assez facile de géométrie, o๠l’introduction (très naturelle) d’un point diamètralement opposé à  un autre suffit essentiellement pour résoudre l’exercice. L’exercice 2 est une inégalité qui n’a pas l’air trop méchante, l’exercice 3 le seul exercice de la liste courte en combinatoire, et l’exercice 4 un exercice très sympathique d’arithmétique/équation fonctionnelle. Environ trois quarts d’heure avant la fin de l’épreuve, les sujets apparaissent sur Mathlinks, et avec stupeur les gens se rendent comptent que l’exercice 4 des BMO avait été posé … le 25 avril aux olympiades américaines de mathématiques! Stupeur et étonnement, le mystère n’est pas encore résolu à  cette heure tardive (la seule certitude est que l’exo 4 a été posé par l’Arabie Saoudite)!

à€ 13h30 précises, Claude et moi acceuillons les bras ouverts nos élèves sortant de l’épreuve, qui ont l’air assez contents. Nous nous rendons dans ma chambre o๠étaient entreposés leurs sacs interdits d’épreuve et en profitons pour faire un debriefing.Arthur, Séginus et Victor disent avoir faits les exercices 1,2,3; Matthieu et Louise les exercices 1 et 3, et Sébastien les exercices 2 et 3 (il n’avait pas pensé à  introduire le fameux point diamétralement opposé). Les élèves sont finalement soulagés d’être en vacances 🙂 et nous partons déjeuner tous ensemble.

Les élèves, excepté Sébastien, ont décidé de profiter des nombreuses piscines et toboggans du complexe après un repos consacré à  la digestion, pendant que Claude, Sébastien et moi, ferus de planche à  voile, partons vers le petit centre de voile du complexe. Après avoir marchandé en russe avec le grand chef véliplanchiste (étonnamment, presque tout le personnel parle mieux russe qu’anglais), j’apprends que les grandes voiles sont en réparation: il en reste une moyenne et des plus petites. Claude décide alors de faire du cataraman avec le grand chef véliplanchiste (qui visiblement était un grand chef du catamaran également), tandis que Sébastien et moi sont tentés par la planche à  voile.

Une ellipse temporelle plus tard, il est 18h30 lorsque nous revenons avec l’hà´tel, et nous apprenons (avec un petit soulagement) que les photocopies des solutions des élèves ne sont pas encore prêtes. Après avoir essayé de glaner des informations sur le fameux exercice 4 sans succès, nous retrouvons les élèves pour le dîner (fastueux, comme d’habitude).

Après le dîner, Claude et moi récupérons enfin les copies des élèves (et le très important “marking scheme”, le sacro-saint barême scrupuleusement respecté par les coordinateurs avec qui nous allons négocier – marchander – les points pour chaque exercice). Je commence de mon cà´té par regarder ce qu’à  donné l’exercice 4, pensant que cela irait vite. Grave erreur stratégique! Bien que personne n’ait trouvé de solution complète, plusieurs pistes intéressantes sont explorées, certaines hors-barême. Cela demande donc pas mal de travail pour voir ce qui peut-être modifié pour rentrer dans une solution officielle ou bien donner une nouvelle solution hors-barême. Il sera peut-être possible de grapiller quelques points sur cet exercice, ce qui sera sà»rement utile dans la course aux médailles. Je décide de laisser l’exercice 1 de géométrie pour demain (en appréhendant un peu en apprenant que le deputy leader anglais a passé 4 heures sur les copies de ses élèves pour l’exo de géométrie), et je pars goà»ter entre autres l’incontournable café turc et discuter avec les différents guides.

BMO – Jour 3 (Dimanche 29 avril)

Conseil du jour: éviter le café turc à  23h le soir… Ma journée, ou plutà´t nuit, commence ainsi par une légère insomnie. J’en profite pour jeter un oeil sur les exercices de géométrie, pensant qu’un peu de lecture favoriserait le sommeil. Grave erreur stratégique! Je constate que deux élèves ont tracé des figures à  la main et ont essayé de les exploiter en travaillant dessus. L’un d’eux a fait une figure propre au moment de rédiger (ainsi qu’une solution juste), mais le deuxième n’a fait que des figures à  la main! La première de ses figures ne fait même pas apparaître le point D défini par l’énoncé, si ce n’est par une flèche pointant vers le point d’intersection hypothétique:

L’élève en question réussit alors l’exploit ineffable de tracer une droite passant par D sans connaître la position exacte de D. Et c’est là  que le drame arrive: l’élève fait passer cette droite par le centre O du cercle, alors qu’en vérité cette droite n’a aucune envie ni raison de passer par O. Cette hypothèse additionnelle rajoute une symétrie au problème qui permet à  l’élève de conclure plus ou moins trivialement… En revanche, la copie de Sébastien (qui nous avait dit ne pas avoir résolu l’exercice) est intéressante: Sébastien calcule tous les angles de la figure, et il apparaît clairement que deux angles cruciaux sont égaux (ce qui permetait de conclure l’exercice en une ligne); on verra ce que cela donne à  la coordination.

Le lendemain matin (le matin du dimanche 29 avril si vous suivez bien) avant le petit-déjeuner, je retrouve les élèves et leur fait plusieurs remarques:

 on ne fait pas des figures de géométrie à  la main !!!!!!!!!!!!!!! J’ai été vraiment surpris par leur réaction assez partagée: ”même au brouillon ????” (ben oui, surtout au brouillon, sinon on ne voit rien …).

 c’est bien d’avoir clairement séparé la rédaction définitive des brouillons et d’avoir clairement expliqué (pour la plupart) les pistes explorées lors d’une solution inaboutie.

En allant vers le petit-déjeuner, je croise Claude, qui est est beaucoup moins satisfait (c’est un euphémisme) par la rédaction de l’exercice de combinatoire. Nous retrouvons alors les élèves, à  qui Claude dit tout le bien qu’il pense de leur rédaction (“Vous allez vous faire massacrer en maths-sup!”, le reste est censuré).

Le corps de la journée a été dédié à  différentes visites en groupe: d’abord la cité antique de Pergé, puis la cascade de Kursunlu (ce qui a fait beaucoup de bien après la première sous un soleil de plomb):

et enfin la vieille ville d’Antalya (les élèves ont préféré rester tranquillement jouer à  l’ombre, alors que Claude, Banu et moi avons fait le tour des magasins pour touristes). Pendant le voyage du retour, j’apprends que les élèves turcs participant aux Olympiades Internationale “gagnent” 10.000 euros par médaille d’or, 8.000 euros par médaille d’argent et 6.000 euros par médaille de bronze (on m’a expliqué que cela s’inscrivait dans une politique plus globale de développement à  haut niveau des sciences lancée par la Turquie depuis une dizaine d’années).

Après le dîner, les élèves vaquent à  leurs occupations (loup-garou/mafia avec l’équipe italienne, etc.), tandis que Claude et moi retournons plancher sur les copies en vue de la coordination du lendemain qui promet d’être riche en émotions.

BMO – Jour 4 (Lundi 30 avril)

Cette journée est décisive: le matin et l’après-midi sont consacrés à  la coordination, qui se passe de la manière suivante. Chaque pays a des heures de passage pour chaque exercice (par exemple, pour la France: exercice 3 à  10h45, exercice 4 à  14h15, etc.) et dispose pour chaque exercice d’un créneau de 30 minutes:

Ainsi, pour l’exercice 3, nous arrivons en face de deux coordinateurs sympathiques, qui nous demandent d’abord à  combien de points nous estimons chaque copie. S’il y a un accord mutuel, la note est gravée à  jamais et on ne regarde même pas la copie. En cas de désaccord, il y a discussion. Quatre copies ont ainsi été expédiées en une minute. Celle de Victor comportait un petit oubli concernant la nécessité d’utiliser une inégalité, ce qui était pénalisé par 1 point dans le barême; nous acceptons. Arrive ensuite la copie de Sébastien. Les coordinateurs (turcs et ne parlant pas français) n’ont rien compris à  sa solution (écrite biensà»r en français, avec aucune mention du fait qu’une récurrence est effectuée, des conflits de notation, l’initialisation écrite dans un petit bout en bas à  gauche de la feuille, etc.). Nous expliquons pendant 30 minutes la solution aux coordinateurs, qui la comprennent et décident de lui accorder 7 points car ils estiment qu’une petite justification est omise et qu’une omission dans une récurrence similaire dans une solution officielle est pénalisée par 3 points dans le barême. Nous exprimons alors notre profond et aimable désaccord, arguant que toutes les récurrences ne se ressemblent pas et que ce qu’il a fait n’est en rien comparable. Comme 45 minutes s’étaient écoulés, on décide de se quitter et de se revoir plus tard dans la journée pour arriver à  un compromis.

Avec Claude, nous restons non loin de la salle de coordination pour faire le bilan, et sommes tout de suite appelés pour coordiner le problème 4, bien que nous étions programmés l’après-midi: en fait, une équipe avait coordiné leur problème rapidement, ce qui a libéré un peu de temps. 4 copies ne posent pas de problème. Arrive le tour de la copie d’Arthur (qui n’a pas rédigé au propre ce qu’il a fait et a donc 5 pages de brouillon). Dans la première page, Arthur écrit “f(2)=1 ou 2”, puis deux pages plus loin “f est l’identité ou bien constante”, ce qui n’avait pas été remarqué par les coordinateurs. Cela nous assure 1 point. Ensuite, Arthur démontre en itérant des factorielles que pour m supérieur ou égal à  3, f(m)= f(2), f(m)=f(1) ou bien f(m) est supérieur ou égal à  m. Cette propriété n’était utile dans aucune des solutions officielles. Or, en cherchant la veille sur Mathlinks, nous avions trouvé une solution qui démontrait que si f(m) est supérieur ou égal à  m, alors forcément f(m)=m. Le résultat d’Arthur pouvait donc servir pour produire une solution hors barème, ce qui lui a finalement apporté 3 points. Vient finalement la copie de Matthieu, qui remarque que f(1) et f(2) ne peuvent valoir que 1 ou 2 et distingue alors 4 cas. Matthieu résume ses résultats concernant tous les cas sauf “f(1)=1 et f(2)=2″ dans une page écrite au propre (le cas f(1)=1 et f(2)=2 a été étudié dans ses brouillons mais n’a pas abouti) et montre que dans ces cas f est constante. Tout à  la fin de son brouillon, dans le cas f(1)=1 et f(2)=2, Matthieu montre que f(3)=3. Or le barème officiel accorde 3 points pour démontrer que si f(3) est différent de 3 alors f est constante. Nous repartons donc également avec 3 points pour Matthieu.

Aussità´t sortis de la coordination de l’exercice 4, nous sommes rappelés pour coordiner l’inégalité (exercice 2). Cinq copies ne posent pas de problème, mais nous discutons de la copie de Matthieu. Celui-ci a ramené l’inégalité proposée à  une autre inégalité qu’il n’a pas su prouver. Il se trouve que cette dernière inégalité est une conséquence immédiate de l’inégalité de Schur (pour k=2), mais Matthieu ne l’avait pas vu. Cette approche figurait dans le barême officiel et nous devions récolter 4 points. Nous tentons de receuillir des points additionels en expliquant que Matthieu a essayé de démontrer sa dernière inégalité en distinguant plusieurs cas, et qu’il résolvait deux d’entre eux en utilisant l’inégalité de Schur (mais pour k=1), et qu’il ne restait qu’un malheureux petit cas à  traiter (le plus difficile). Nous repartons avec un 7/10.

Nous faison le bilan, donnons les notes intermédiaires aux élèves, Claude redit tout le bien qu’il pense de la rédaction de la combinatoire, et partons déjeuner afin de receuillir des forces pour l’ultime coordination de l’exercice 1 de géométrie.

Cinq copies de l’exercice 1 ne posent aucun soouci. Nous discutons alors de la copie de Sébastien, qui ne contient qu’une page avec une figure o๠tous les angles de la figure sont calculés, ainsi que quelques lignes d’explications. Les coordinateurs proposent 4 points pour avoir montré qu’un certain angle était droit. Mais Sébastien introduit (astucieusement) un certain point O” et l’utilise pour calculer tous les angles de la figure. En particulier, on lit immédiatement l’égalité des angles FBE et FCD, ce qui était absolument crucial pour conclure. L’étape consistant à  conclure à  partir de l’égalité des angles FBE et FCD rapportant 4 points, nous expliquons que nous estimons la copie à  6 points, ce qui finalement convient aux coordinateurs.

Nous changeons tout de suite de table et retrouvons nos amis coordinateurs de l’exercice de combinatoire. Entre temps, nous avions repris la solution de Sébastien phrase et phrase, et nous l’expliquons aux coordinateurs par un petit dessin. La solution de Sébastien est particulièrement élégante (l’idée étant de faire une récurrence sur k et non sur n), mais est particulièrement mal rédigée (c’est un euphémisme). Les coordinateurs insistent encore une fois sur le fait qu’une petite justification est omise et qu’une omission dans une récurrence similaire dans une solution officielle est pénalisée par 3 points dans le barême, et nous donnent ainsi 7 points. Nous demandons plutà´t 9 points et nous ré-expliquons que la récurrence est pas du tout similaire. Les coordinateurs proposent 8 points en compromis, que nous empressons d’accepter, ce qui clot la coordination.

Ainsi, la coordination s’est déroulée assez paisiblement. Les coordinateurs étaient particulièrement sympathiques et les débats se sont déroulés dans une ambiance très amicale :). Voici les résultats définitifs de l’équipe de France:

Nom Exercice 1 Exercice 2 Exercice 3 Exercice 4 TOTAL Médaille
Arthur BLANC-RENAUDIE 10 10 10 3 33 Argent
Sébastien CHEVALEYRE 6 10 8 0 24 Bronze
Louise GASSOT 10 0 10 1 21 Bronze
Seginus MOWLAVI 10 10 10 0 30 Argent
Matthieu PIQUEREZ 10 7 10 3 30 Argent
Victor QUACH 4 10 9 0 23 Bronze

Grà¢ce aux coordinations express, nous avions tout fini à  15h (au lieu de 17h45 comme le précisait le programme). On en profite pour décompresser et se baigner. Ensuite, ayant le barême en tête, je corrige les exercices 1 et 4 des élèves qui composaient en France (nous avions demandé à  ce que les copies soient immédiatement scannées et nous soient envoyées). Voici les résultats de l’équipe remplaçante (Claude corrigera un peu plus tard les exercices 2 et 3):

Nom Exercice 1 Exercice 2 Exercice 3 Exercice 4 TOTAL
Michel BEAUGHON 10 10 10 1 31
Félix BRETON 2 0 1 1 4
Nathanaà«l COURANT 10 0 10 5 25
Antoine DUPUIS 1 2 1 0 4
Cyril LETROUIT 10 10 10 9 39

Après le dîner a lieu la réunion finale du jury, o๠les barres fatidiques des médailles sont fixées. Avant cela, le leader de l’Arabie Saoudite s’explique (dans une ambiance un peu tendue) sur ce qui a pu se passer pour que le problème 4 tombe à  deux olympiades différentes. Il se trouve qu’un entraîneur de l’équipe d’Arabie Saoudite les avait quittés en octobre, et avait proposé ce problème aux olympiades américaines, sans concertation avec les entraineurs restants d’Arabie Saoudite qui l’avaient également envoyé aux olympiades balkaniques… Après cette explication, le jury choisit les barres des médailles. Officiellement, pour fixes les barres, on ne regarde que les participants des 11 pays balkaniques. Parmi eux, environ la moitié doit avoir une médaille, et parmi ceux-là  la moitié la médaille de bronze, le tiers la médaille d’argent et le sixième la médaille d’or. Théoriquement, cela donnait le bronze à  20, l’argent à  31 et l’or à  40. Si on prenait en compte les participants des 22 pays, les organisateurs nous informent à  titre indicatif que le bronze resterait à  20, l’argent passerait à  30 et l’or à  39. Les barres sont alors décidées par un vote (à  la majorité) des 11 pays balkaniques seulement. Tout le monde est d’accord pour fixer le bronze à  20. Pour l’argent, c’est plus délicat: aucun candidat des pays balkaniques n’a obtenu 30 ou 29. Choisir l’argent à  31, 30 ou 29 ne changeait donc rien pour ces pays-là . Une large majorité vote pour la barre à  30 (ouf, nous avons deux candidats à  30!). Finalement, une très courte majorité vote l’or à  39 points. L’équipe de France repart ainsi avec 3 médailles d’argent et 3 médailles de bronze.

BMO – Jour 5 (Mardi 1er mai)

La journée commence par une excursion de cinq heures en “disco-boat” (un bateau réservé aux participants des BMO, équipé d’un DJ):

Au programme: jeux de cartes, chaises musicales, barbecue, photos de groupe à  cà´té d’une cascade qui nous arrose:

Nous profitons d’une petite pause après le repas pour nous baigner, et Matthieu se fait attaquer par un requin qu’il a combattu à  mains nues (c’est la version officielle):

Une fois arrivés sur la terre ferme, nous repartons en bus pour rejoindre notre hà´tel pour la cérémonie de clà´ture. à€ l’hà´tel, nous apprenons que la cérémonie est avancée; chacun se douche et revêt ses plus beaux atours en moins d’une demie heure. La cérémonie commence par quelques discours, se poursuit par des dances folkoriques turques et se finit par le moment tant attendu: la distribution des médailles. Les élèves primés sont appelés par six ou sept sur scène, et diverses personnalités leurs remettent individuellement les médailles, le tout sous les hourras et la hola de la salle en délire.

La soirée se poursuit par le dîner de clà´ture, qui n’a pas lieu dans le restaurant o๠nous prenions usuellement notre repas du soir, mais dans une salle spécialement réservée pour nous. Les mets sont nombreux et plus délicieux les uns que les autres, et une chanteuse accompagnée d’un orchestre interprètent des chansons de styles différents (rumba, cha-cha, slow, chansons populaires turques).

Au fur et à  mesure que le repas avance, de plus en plus de personnes se lèvent pour dancer, le point culminant arrivant lorsqu’une danse extrêmement populaire est jouée: on forme une très longue chaine qui court à  travers toute la salle en se tenant par les petits doigts et en enchaînement cycliquement une chorégraphie qui ressemblait à  “trois pas à  droit, jeté de pied, trois petits pas à  gauche, jeté de pied” (sorte de madison turc, si j’ose la comparaison).

BMO – Jour 6 (Mercredi 2 mai)

C’est malheureusement déjà  le jour du départ… Tous les réveils fonctionnent correctement (à  moins qu’il n’y ait pas eu besoin de réveil), et nous partons vers l’aéroport après avoir dit au revoir à  notre guide Banu.

L’enregistrement et le passage de la sécurité se passe sans souci (les personnes de la sécurité se sont demandé plusieurs fois ce qui était le gros disque métal qu’ils voyaient dans les sacs des élèves…). Nous avions un vol direct depuis Antalya pour Paris, ce qui nous a permis de voyager sereinement. Aucun baggage n’a été perdu, et les élèves ont été remis sains et saufs à  leurs parents!

Merci à  toute l’équipe d’organisation des BMO 2012 et à  notre guide Banu pour une semaine inoubliable, ainsi qu’à  toutes les personnes qui ont donné beaucoup d’énergie pour entraîner les élèves et qui leurs transmettent la passion des mathématiques!

— Igor Kortchemski, Deputy Leader

Olympiade balkanique de mathématiques 2010 – Les résultats

En 2010, la France a envoyé une équipe de 5 jeunes à  l’olympiade balkanique qui se déroulait du 2 au 8 mai 2010 à  Chisinau en Moldavie .

Diane Gallois-Wong (30 points) et Jean-Francois Martin (29 points) ont gagné une médaille d’argent. Sergio Vega (21 points), Thomas Budzinski (20 points)
et Matthew Fitch (12 points) ont gagné une médaille de bronze.

[Tous les résultats ->
http://www.math.md/bmo2010/Files/Official_Results_BMO_2010_By_Countries.pdf]

Belle performance, et excellente préparation en vue de l’OIM en juillet 2010 !

Olympiade balkanique de mathématiques 2011 – Les résultats

Olympiades Balkaniques 2011 – Iasi, Roumanie

Résultats des membres de l’équipe de France (avec les résultats détaillés) :

FRA1 Jonathan Dong 2+2+4+0 = 8

FRA2 Diane Gallois-Wong 10+2+4+0 = 16 BRONZE

FRA3 Baptiste Louf 10+0+4+2 = 16 BRONZE

FRA4 Vincent Mouly 0+3+10+0 = 13 BRONZE

FRA5 Matthieu Piquerez 1+0+10+2 = 13 BRONZE

Les barres de médailles :
Or : 30
Argent : 17
Bronze : 10

L’quipe était encadrée par :
Claude Deschamps (Leader) et Xavier Caruso (Deputy Leader)

Le témoignage d’un des membres de l’équipe

Tout d’abord une petite présentation : je m’appelle Baptiste, je vis dans une petite ville des Vosges (Epinal) et je suis en Terminale S. J’ai participé aux Olympiades Académiques l’an dernier, puis au stage d’été de Grésillon 2010, et cette année, je me suis qualifié pour les Olympiades balkaniques de mathématiques (BMO). Je suis donc parti avec 4 autres lycéens à  Iasi, en Roumanie, du 4 au 9 Mai pour participer à  cette compétition.

Nous avons donc pris l’avion mercredi 4 au matin, à  7, dont un leader, un adjoint et 5 élèves, au lieu de 6 comme c’était initialement prévu, l’un de nous ne pouvant pas venir pour raisons personnelles. Après un long voyage incluant les vols Paris-Bucarest et Bucarest-Iasi, plus le temps d’attente entre les deux, nous sommes finalement arrivés à  destination en fin de journée; nous étions vers 18 heures dans notre hà´tel. Nous y avons rencontré nos guides : Claude, un élève de 15 ans scolarisé dans un établissement de la ville, qui a vécu en France jusqu’à  ses 6 ans et Ioana Tomei, une professeure qui parle également le français couramment. Nous nous sommes installés, puis nous sommes allés manger, au restaurant Bolta Rece ; c’est là  que nous avons pris tous nos repas dans la semaine. Pour la petite histoire, si jamais vous allez en Roumanie, ne goà»tez pas leur fromage typique, ils nous en servaient à  tous les repas et personne (ou presque) ne le mangeait. Là -bas, on a pu voir quelques autres équipes, j’ai en particulier retrouvé Federico, un italien rencontré à  Grésillon avec qui je m’entends très bien.

Le lendemain, ainsi que les autres jours nous avons visité Iasi avec nos guides. Iasi est la deuxième ville de Roumanie, et nous y avons vu beaucoup de très belles choses : le palais de la Culture, un musée dédié à  Mihai Eminescu, le plus grand poète roumain, les universités, le planétarium, les parcs, le Jardin botanique, … Cependant, malgré cela, la Roumanie reste un pays très pauvre : beaucoup des bà¢timents sont en reconstruction, voire pas alors que ça serait nécessaire, les rues ne sont pas en bon état, et les lycéens, comme nous avons pu le constater, pensent tous à  aller faire leurs études à  l’étranger. Cependant, cela est dur pour eux car leurs revenus sont beaucoup plus faibles, 60% de la population gagne le revenu minimum pour les travailleurs qui est de 150 €, et pas adaptés à  la vie dans des pays riches comme l’Angleterre o๠tout est plus cher.

Jeudi 6, nous avons également eu la cérémonie d’ouverture, qui s’est faite sans l’Albanie, qui n’était pas arrivée. Au programme, un mot rapide de chaque leader, une distribution de chocolat (la présidente du comité voulait faire quelque chose d’original), et un long discours de la part de chacun des membres du comité, comme ils étaient environ 8, c’était un peu lassant.

Vendredi, nous avons passé l’épreuve, de 9h30 à  14h. Cette année nous étions répartis à  10 par salle, selon les numéros que nous avions (par exemple, j’étais FRA3, je me suis retrouvé avec ROM3, etc.). On nous a expliqué la marche à  suivre (rédiger sur une seule face des feuilles, remettre le tout dans l’enveloppe à  la fin, etc.), puis on nous a laissé nous débrouiller sur les exercices. Pour ceux qui ne connaissent pas le concept, il s’agit de 4 exercices chacun noté sur 10 points. Normalement, ils sont classés par difficulté croissante, mais cette année le 2 était le plus dur, il avait été choisi en 2 parce qu’il admettait une solution en 5 lignes, mais elle n’était pas du tout naturelle. Après l’épreuve, nous nous sommes retrouvé pour un débriefing rapide avec Xavier, notre adjoint, et puis nous sommes retournés à  nos activités, tandis que notre leader et notre deputy leader commençaient les coordinations. Il s’agit de corrections faites entre le Jury dédié à  chaque exercice et les leaders de chaque équipe. Chaque partie corrige séparément, et s’il y a litige sur la note à  donner, ou bien tout simplement que le Jury n’a pas compris une part de la preuve, il s’ensuit une discussion pour tomber d’accord sur la note à  donner à  la copie.

La cérémonie de clà´ture a été avancée au samedi soir. Nous n’avions pas eu les résultats avant, nous avons donc appris que nous avions gagné 4 médailles de bronze, et j’ai été surpris d’apprendre que j’avais eu le meilleur résultat de l’équipe ex-aequo, et un peu frustré de savoir que j’avais loupé l’argent d’un point ! Les médailles sont quelque chose de particulier aux compétitions d’étudiants comme les BMO. Il ne s’agit pas des 3 premiers, mais de place dans le classement. Aux BMO, le Jury regarde les résultats des élèves les pays membres (c’est à  dire les pays de la zone des Balkans), et attribue une médaille de bronze à  un tout petit peu moins que les deux premiers tiers, une médaille d’argent au premier tiers et une médaille d’or au premier neuvième, puis applique les barres (en fonction des notes) à  l’ensemble des participants. Cette année, il y a eu moins de 10 médailles d’or.

à€ part les mathématiques, les Olympiades Balkaniques ont été pour moi une formidable expérience grà¢ce aux rencontres que j’ai faites là -bas. Les élèves étrangers étaient très sympathiques et intéressants, et beaucoup des guides avaient entre 15 et 19 ans, ce qui facilite le dialogue et nous a rendu plus proches d’eux. Le soir de l’épreuve, un disco a été organisé à  l’hà´tel, il n’y avait pas beaucoup de monde, entre 20 et 30 personnes, mais c’était très sympa. Après, je suis resté dans le hall de l’hà´tel, et nous avons continué à  discuter avec deux guides roumaines et un Chypriote jusqu’à  6 heures du matin. De même, le lendemain soir nous nous sommes retrouvés avec d’autres équipes et nous avons commandé des pizzas. Bref, il y avait une très bonne ambiance là -bas, j’ai rencontré des gens formidables.

En résumé, j’ai vraiment aimé mon séjour à  Iasi, j’ai été ravi sur tous les plans, et les BMO me manquent. Maintenant, j’espère être qualifié pour les Olympiades Internationales à  Amsterdam en juillet !

Coupe Animath 2014 : liste des collégiens admis

Les collégiens admis au stage olympique de Montpellier, du 18 au 28 aoà»t 2014, sont par ordre alphabétique :

NOM Prénom classe Ville Département
AYANIDES Pierre 5 Buc 78
BAZIN Pierre-Alexandre 4 Paris 75
BENRUBI Maxime 4 Buc 78
BORAUD Gaspard 4 Caen 14
CAYATTE Marjorie 3 Neuilly 92
ESCRIG Michel 3 Dijon 21
GARà‡ONNET Olivier 3 St Philbert de Gd Lieu 44
HAMDI Ilyes 3 Doha QA
KAHANE Yakob 3 Paris 75
LAMBERET Marc 3 Blagnac 31
LESBATS Rémi 3 Paris 75
LOPEZ Adrien 3 St Germain en Laye 78
MAURY Tanguy 4 Brindas 69
NIESEN Merlin 3 Amiens 80
OLIVIER Hugo 4 Agneaux 50
OLLIVIER Pierre 3 Paris 75
PANCHAUD Hugo 3 Paris 75
POLO Alexandre 4 Paris 75
ROQUETA Sophie 3 Paris 75
ROSINSKY Juraj 4 Peron 01

Chacun d’eux a reçu un courriel l’en informant. En outre, une liste d’attente a été constituée pour faire face aux éventuels désistements. Les élèves de la liste d’attente ont eux aussi été avertis.

La liste des lycéens admis au stage olympique de Montpellier est elle aussi publiée.

coupe Animath 2014 : liste des lycéens admis

Voici la liste des lycéens admis au stage olympique de Montpellier (18 – 28 aoà»t 2014), suite à  la coupe Animath :

NOM Prénom cals ville dépt
APERS Etienne 1 Douai 59
BAMBURY Henry 2 Paris 75
BOUIS Vincent 1 Senlis 60
BOURGUIGNON Slavik 1 Nîmes 30
BRETON Félix 2 Paris 75
BUSTILLO Pablo 1 Bruxelles BE
CABRITA Joseph 1 Dijon 21
CHAOUAT Marius 2 Toulouse 31
CHARNAVEL Louis 1 Villemomble 93
CLAROU Pierre 2 Lyon 69
COLLET Baptiste 2 Buc 78
COUDREAU Alexandre 2 Paris 75
DAVALO Colin 1 Orsay 91
DEFOURNE Timothée 2 Bruay Labuissiere 62
DELHELLE Morine 2 Huy BE
DEPRES Hugues 1 Nantes 44
DEVILLERS Albertine 1 Besançon 25
DEZERCES Enguerrand 1 Chartres 28
DING Clara 1 Saint-Germain-en-Laye 78
DUPONT DE DINECHIN Maximilien 1 Versailles 78
FABIANO Nicolas 1 Sceaux 92
FENEUIL Thibauld 1 Albi 81
FIEVET Baptiste 1 Douai 59
GALANT Damien 2 La Louvière BE
GERAUD Louis 1 Nantes 44
GIRAULT Damien 1 Chinon 37
GODFARD Pierre 2 Paris 75
GOLFOUSE Arnaud 1 Lyon 69
GOMEZ Solène 1 Meylan 38
GRINDEL Clément 1 Versailles 78
HAZARD Octave 1 Montreuil 93
HEIDELBERGER Leo 1 Ferney-Voltaire 01
HUYNH Nicolas 2 Rueil-Malmaison 92
KUGELMANN Axel 1 Strasbourg 67
LAGARDE Maxence 2 Versailles 78
LAINEE Martin 1 Montpellier 34
LEMERCIER Adrien 2 Paris 75
LENGELE Jérémy 1 Bruxelles BE
LENOIR Théo 1 Agneaux 50
LEZANE Clément 1 Paris 75
MADELINE-DEROU Charles 1 Granville 50
MEMMI Emmanuel 1 Castelnau le lez 34
NEBOUT Arthur 1 Cognac 16
NOISETTE Florent 1 Buc 78
PERRIN Lilian 2 Chambéry 73
PORTIER Julien 1 Vitry le françois 51
POUX César 1 Paris 75
QUAREZ Etienne 2 Maurepas 78
ROZENBERG Raphaà«l 2 Paris 75
SANCHO Hugo 1 Paris 75
SCHELSTRAETE Léo 1 Ramegnies-Chin BE
SEPULCHRE Thomas 2 Brunoy 91
SHEN Rubing 1 Dijon 21
SIMON Corentin 2 Bruxelles BE
STARK Gabriel 1 Paris 75
THIAULT Alexandre 2 Lyon 69
TRABELSI Wassim 1 Verneuil Sur Seine 78
VERMàˆS Victor 1 Lyon 69
WANG Lucie 2 Paris 75
ZHANG Raymond 1 Bordeaux 33

Chacun d’eux a été prévenu par un courriel. En outre, une liste d’attente a été constituée pour faire face aux éventuels désistements. Les lycéens de la liste d’attente ont eux aussi été prévenus par courriel.

Les collégiens admis au stage sont eux aussi connus.

Palmarès de la Coupe Animath 2014

La coupe Animath (3 juin 2014) a vu concourir 315 candidats, 159 de première, 73 de seconde, 48 de troisième et 32 de quatrième, 2 de cinquième et 1 de sixième.

Voici les meilleurs scores obtenus pour chacun des quatre niveaux :

Quatrième (y inclus cinquième et sixième)

(sur 35)

32 Pierre-Alexandre BAZIN
31 Alexandre POLO
25 Pierre AYANIDES
24 Hugo OLIVIER
21 Tanguy MAURY

(N.B. Pierre AYANIDES est en cinquième)

Troisième

(sur 35)

35 Ilyès HAMDI
33 Adrien LOPEZ
32 Marc LAMBERET
31 Hugo PANCHAUD
28,5 Olivier GARCONNET
28 Michel ESCRIG
25 Yakob KAHANE

Seconde

(sur 40)

40 Lucie WANG
40 Adrien LEMERCIER
38 Thomas SEPULCHRE
37 Baptiste COLLET
36 Maxence LAGARDE
36 Alexandre THIAULT
33 Félix BRETON
30 Timothée DEFOURNE
29 Henry BAMBURY
29 Damien GALANT
25 Pierre CLAROU
25 Pierre GODFARD

Première

(sur 40)

40 Vincent BOUIS
40 Nicolas FABIANO
40 Arthur NEBOUT
40 Jérémy LENGELE
40 Florent NOISETTE
39 Colin DAVALO
39 Etienne APERS
39 Wassim TRABELSI
38 Léo HEIDELBERGER
37 Gabriel STARK
37 Pablo BUSTILLO
36 Julien PORTIER
36 Hugues DEPRES
33 Slavik BOURGUIGNON
32 Léo SCHELSTRAETE
31 Louis CHARNAVEL
31 Clara DING
30,5 Clément LEZANE
30 Théo LENOIR
29 Clément GRINDEL
28 Hugo SANCHO
28 Louis GERAUD
28 Arnaud GOLFOUSE
27 Victor VERMES
27 Emmanuel MEMMI

Toutes nos félicitations aux lauréats ! Cette Coupe Animath permet, entre autres choses, de sélectionner les 80 participants au stage olympique de Montpellier (18 – 28 aoà»t 2014).

Coupe Animath 2014 : le palmarès

Le 3 juin 2014, 315 candidats, 159 de première, 73 de seconde, 48 de troisième, 32 de quatrième, 2 de cinquième et 1 de sixième, ont concouru pour la Coupe Animath , compétition nouvellement créée. Cette coupe permet entre autres de sélectionner les participants au stage olympique de Montpellier (18 – 28 aoà»t 2014), mais elle est aussi prise en compte pour d’autres stages (toussaint 2014) ainsi que par l’Olympiade Française de Mathématiques.

Afin de diversifier le public participant au stage de Montpellier, conformément au règlement de la Coupe Animath, un système de bonification a été mis en place qui permet à  davantage de filles, de primo-entrants (élèves n’ayant pas encore participé à  un stage olympique ni à  l’Olympiade Française de Mathématiques) et de lauréats de l’Olympiade Académique de Mathématiques et de Kangourou, de participer à  ce stage. Comme malgré ces bonifications, la proportion de filles était encore insuffisante, les listes d’attente constituées pour répondre à  d’éventuels désistements sont presque exclusivement féminines.

Conformément au règlement, vous trouverez ci-dessous le palmarès des 82 meilleurs scores de première, 41 de seconde, 24 de troisième et 17 de quatrième, cinquième et sixième. Les exercices sont notés chacun sur 10 hormis le premier qui est noté sur 5, si bien que les scores des collégiens sont sur 35 et ceux des lycéens sur 40. Les moyennes par exercice sont :

collégiens :
Exercice 1 : 1,7 / 5 ;
Exercice 2 : 4,7 / 10 ;
Exercice 3 : 1,3 / 10 ;
Exercice 4 : 4,3 / 10 ;

lycéens :
Exercice 4 : 7,6 / 10 ;
Exercice 5 : 3,7 / 10 ;
Exercice 6 : 2,0 / 10 ;
Exercice 7 : 4,0 / 10 ;

Palmarès de la coupe Animath

Quatrième

score NOM Prénom sexe classe dépt ville
32 BAZIN Pierre-Alexandre G 4 75 Paris
31 POLO Alexandre G 4 75 Paris
25 AYANIDES Pierre G 5 78 Buc
24 OLIVIER Hugo G 4 50 Agneaux
21 MAURY Tanguy G 4 69 Brindas
20 ROSINSKY Juraj G 4 1 Péron
18 BENRUBI Maxime G 4 78 Buc
16,5 BORAUD Gaspard G 4 14 Caen
16 ZABLOCKI Jean G 5 26 Portes lès Valence
15 FUSELLIER Thomas G 4 71 Macon
14 ROPTIN Aymeric G 4 63 Clermont-Ferrand
13 VIAL Simon G 4 69 Lyon
10 TUREVSKY Peter G 4 78 Saint Germain en Laye
10 YING Emilie F 4 78 Saint Germain-en-Laye
8 BARRAT Alexandre G 4 78 Saint Germain-en-Laye
8 GUITTON Lilian G 4 17 Marennes
8 LUDER Guillaume G 4 74 St-Julien en Genevois

Troisième

score NOM Prénom sexe classe dépt ville
35 HAMDI Ilyes G 3 QA Doha
33 LOPEZ Adrien G 3 78 Saint Germain-en-Laye
32 LAMBERET Marc G 3 31 Blagnac
31 PANCHAUD Hugo G 3 75 Paris
28,5 GARà‡ONNET Olivier G 3 44 Saint Philbert de grand lieu
28 ESCRIG Michel G 3 21 Dijon
25 KAHANE Yakob G 3 75 Paris
24 NIESEN Merlin G 3 80 Amiens
23 OLLIVIER Pierre G 3 75 Paris
21 CAYATTE Marjorie F 3 92 Neuilly sur Seine
21 DE SAINT QUENTIN Guillaume G 3 GB Londres
21 LESBATS Rémi G 3 75 Paris
21 NGUYEN Anh-Vu G 3 92 Issy-Les-Moulineaux
21 ROQUETA Sophie F 3 75 Paris
20 BOUTIN Oscar G 3 78 Le Vésinet
17,5 CHARMONT Clément G 3 69 Lyon
17,5 SHADID Rafiq-Alexandre G 3 75 Paris
16 WAEGAERT Antoine G 3 78 Saint Germain-en-Laye
15 GINET Mathieu G 3 38 La Tour-du-Pin
15 GRACZYK Marc G 3 78 Saint Germain-en-Laye
15 REY Gaetan G 3 63 Pont du chà¢teau
13 PELLETIER-WIRTH Barthélemy G 3 75 Paris
12 UTHURRIAGUE Alexis G 3 75 Paris
12 ZHOU Kévin G 3 78 Le Vésinet

Seconde

score NOM Prénom sexe classe dépt ville
40 LEMERCIER Adrien G 2 75 Paris
40 WANG Lucie F 2 75 Paris
38 SEPULCHRE Thomas G 2 91 Brunoy
37 COLLET Baptiste G 2 78 Buc
36 LAGARDE Maxence G 2 78 Versailles
36 THIAULT Alexandre G 2 69 Lyon
33 BRETON Félix G 2 75 Paris
30 DEFOURNE Timothee G 2 62 Bruay Labuissiere
29 BAMBURY Henry G 2 75 Paris
29 GALANT Damien G 2 BE La Louvière
25 CLAROU Pierre G 2 69 Lyon
25 GODFARD Pierre G 2 75 Paris
24 DELHELLE Morine F 2 BE Huy
24 SIMON Corentin G 2 BE Bruxelles
23 CONCHON-KERJAN Cyril G 2 78 Saint-Germain-en-Laye
23 HUYNH Nicolas G 2 92 Rueil-Malmaison
22,5 QUAREZ Etienne G 2 78 Maurepas
22 CREPON Pierre-André G 2 78 Versailles
22 FAY DE LESTRAC Thibault G 2 75 Paris
22 ROZENBERG Raphaà«l G 2 75 Paris
19 CHAOUAT Marius G 2 31 Toulouse
19 COUDREAU Alexandre G 2 75 Paris
19 DENIAU Tristan G 2 78 Saint Germain en Laye
19 MAIGNANT Jérémy G 2 92 Sceaux
19 PERRIN Lilian G 2 73 Chambéry
18 BUSSONE Grégoire G 2 34 Lunel
18 VALENTIN Hugo G 2 57 Metz
16 AYANIDES Thibault G 2 78 Buc
16 BREMAUD Louis G 2 49 Angers
16 CAPLIER Romain G 2 38 Grenoble
16 REVENANT Paul G 2 38 Grenoble
15 LINGER Clément G 2 92 Rueil-Malmaison
14 BEN BOUAZZA Anass G 2 75 Paris
14 CHEN Yuehua F 2 38 Grenoble
14 MATTATIA Eve F 2 75 Paris
14 TIXERONT Gaétan G 2 26 Valence
13 LACROIX Arthur G 2 69 Lyon
12 DE RICHAUD Maxime G 2 75 Paris
12 JOND Amélie F 2 75 Paris
11 BREMAUD Vincent G 2 49 Angers
11 LEONARD Julien G 2 57 Metz

Première

score NOM Prénom sexe classe dépt ville
40 BOUIS Vincent G 1 60 Senlis
40 FABIANO Nicolas G 1 92 Sceaux
40 LENGELE Jérémy G 1 BE Bruxelles
40 NEBOUT Arthur G 1 16 Cognac
40 NOISETTE Florent G 1 78 Buc
39 APERS Etienne G 1 59 Douai
39 DAVALO Colin G 1 91 Orsay
39 TRABELSI Wassim G 1 78 Verneuil Sur Seine
38 HEIDELBERGER Leo G 1 1 Ferney-Voltaire
37 BUSTILLO Pablo G 1 BE Bruxelles
37 STARK Gabriel G 1 75 Paris
36 DEPRES Hugues G 1 44 Nantes
36 PORTIER Julien G 1 51 Vitry le François
33 BOURGUIGNON Slavik G 1 30 Nîmes
32 SCHELSTRAETE Léo G 1 BE Ramegnies-Chin
31 CHARNAVEL Louis G 1 93 Villemomble
31 DING Clara F 1 78 Saint-Germain-en-Laye
30,5 LEZANE Clément G 1 75 Paris
30 LENOIR Théo G 1 50 Agneaux
29 GRINDEL Clément G 1 78 Versailles
28 GERAUD Louis G 1 44 Nantes
28 GOLFOUSE Arnaud G 1 69 Lyon
28 SANCHO Hugo G 1 75 Paris
27 MEMMI Emmanuel G 1 34 Castelnau le lez
27 VERMàˆS Victor G 1 69 Lyon
26,5 DEVILLERS Albertine F 1 25 Besançon
26,5 POUX César G 1 75 Paris
26,5 ZHANG Raymond G 1 33 Bordeaux
26 HAZARD Octave G 1 93 Montreuil
26 MADELINE-DEROU Charles G 1 50 Granville
25 ALEXANDRE Duy Anh G 1 VN Hanoi
25 FENEUIL Thibauld G 1 81 Albi
25 FIEVET Baptiste G 1 59 Douai
25 KUGELMANN Axel G 1 67 Strasbourg
25 MARET Théo G 1 38 Pontcharra
25 SEYMAT Maxence G 1 13 Aix-en-Provence
25 SHEN Rubing G 1 21 Dijon
24,5 CAYATTE Mayeul G 1 75 Paris
24 DUPONT DE DINECHIN Maximilien G 1 78 Versailles
24 GOMEZ Solène F 1 38 Meylan
24 LAMRANI Lamia F 1 75 Paris
24 MALVOISIN David G 1 75 Paris
23 GIRAULT Damien G 1 37 Chinon
23 LUGINBàœHL Thomas G 1 38 Vienne
23 ROBIN David G 1 78 Versailles
22 BAJODEK Thibault G 1 31 Toulouse
22 CABRITA Joseph G 1 21 Dijon
22 CIROT Anatole G 1 72 Le Mans
22 DEZERCES Enguerrand G 1 28 Chartres
22 HEMBERT Pierre G 1 67 Strasbourg
21 DUMORTIER Jillian G 1 69 Lyon
21 GOY Samuel G 1 42 Chazelle sur Lyon
21 LAINEE Martin G 1 34 Montpellier
21 TURC Etienne G 1 90 Belfort
20 BOIX Alice F 1 69 Lyon
20 CHANG Su-Yeon F 1 4 Manosque
20 CLISSON Guillaume G 1 55 Bar le Duc
20 RUBIN Jean G 1 73 Chambéry
20 SAINT PAUL Florent G 1 65 Lyon
19 BENOIST-LUCY Louis G 1 75 Paris
19 BERRIET Pierre G 1 25 Besançon
19 BESANà‡ON Louis G 1 44 Nantes
19 BOLZER Mari-Lena F 1 68 Colmar
19 COQUINOT Baptiste G 1 89 Joigny
19 D’ALIMONTE Lucas G 1 91 Gif-sur-Yvette
19 DAGNAUD Romain G 1 16 Barbezieux
19 DURAN-LE PEUCH Victor G 1 1 Gex
19 FLORANT Clément G 1 16 Barbezieux
19 MALKA Laurent G 1 16 Barbezieux
19 PERRIN Thomas G 1 69 Charbonnières-les-Bains
19 SIEGEL Adam G 1 75 Paris
19 VANET Arthus G 1 42 Saint-Etienne
19 VUONG Christophe G 1 75 Paris
18 BOUCHERON Solange F 1 75 Paris
18 LAIGRET Sébastien G 1 75 Paris
18 MOAL Candice F 1 44 Nantes
18 PARIS Antoine G 1 77 Fontainebleau
18 VAUDIAU Nathan G 1 71 Montceau-les-Mines
17,5 BARRE Mathieu G 1 31 Toulouse
17 GUIBE Nicolas G 1 51 Reims
17 MARTY Lois F 1 69 Saint-Priest
17 MOREAU-PERNET Baptiste G 1 38 Pontcharra

La Coupe Animath 2015

Tu aimes faire des mathématiques ? Viens partager ta passion avec d’autres jeunes de ton à¢ge. De jolis problèmes vous attendent, très différents de ce que tu fais en classe. Cela nécessite davantage d’ingéniosité que de connaissances. Tu acquerras une méthode de raisonnement qui te sera profitable pour tes études supérieures.

La Coupe Animath

Le 2 juin 2015 s’est déroulée la seconde Coupe Animath, épreuve qui s’adresse aux meilleurs élèves de la quatrième à  la première. Les élèves ont passé l’épreuve dans leur établissement scolaire. L’épreuve a duré trois heures pour les collégiens et quatre heures pour les lycéens. A chaque niveau correspond un classement. Les lauréats sont invités à  participer à  un stage de dix jours pendant les vacances d’été , du 17 au 27 aoà»t 2015 au Centre International de Valbonne . Un stage junior aura également lieu à  la Toussaint, à  Cachan.

Le règlement de la Coupe Animath

Première circulaire du stage olympique

Exemples d’exercices de la Coupe Animath

Les stages olympiques

Inscription

L’inscription (close !) à  la coupe Animath se fait par Internet, en deux temps : un test éliminatoire, en ligne, dont sont dispensés certains lauréats de compétitions, et l’épreuve elle-même, à  laquelle l’établissement scolaire doit s’inscrire après réussite du test éliminatoire. Tous les candidats remplissent le même formulaire d’inscription, mais ceux qui répondent “oui” à  l’une des questions sur la réussite aux compétitions ou la participation à  un précédent stage sont inscrits d’office sans passer par le test éliminatoire.

Pendant le reste de l’année, l’Olympiade Française de Mathématiques suit une centaine d’élèves sélectionnés pour les préparer plus directement aux diverses Olympiades Internationales de Mathématiques . En France, les élèves de première et certains élèves de quatrième peuvent passer l’Olympiade Académique . Plusieurs clubs proposent également une préparation aux olympiades de mathématiques, ainsi qu’à  d’autres compétitions .

Procédure et dates limites : l’élève doit se connecter avant le 27 mai sur le site de l’inscription en ligne (close !) pour s’enregistrer. Il doit également répondre sur ce site au test éliminatoire avant le 27 mai (sauf s’il en est dispensé). Le site indique immédiatement si le test est réussi ; si oui, le site fournit un document à  imprimer et à  donner à  l’administration de l’établissement scolaire (ou à  un professeur) pour que celui-ci s’inscrive, avant le 29 mai, selon la procédure indiquée sur ledit document.

N’attendez pas le dernier moment pour vous inscrire ! Les établissements doivent disposer d’assez de temps pour organiser la surveillance de l’épreuve du 2 juin. Pour voir à  quoi ressemble cette dernière épreuve, regardez ici .

Pour plus de détails concernant le stage : voir la circulaire 1

Compte tenu du règlement de la Coupe Animath, les élèves suivants sont autorisés à  participer au stage à  Valbonne et ont été contactés individuellement par mail (attention, compte tenu de désistements, quelques élèves supplémentaires ont été acceptés au stage et prévenus par mail) :

Première : élèves dont le score est supérieur ou égal à  21 ou dont le score bonifié est supérieur ou égal à  25 :
Breton Félix, Collet Baptiste, Lemercier Adrien, Thiault Alexandre, Wang Lucie, Galant Damien, Bambury Henry, Caplier Romain, Gaudin Solal, Revenant Paul, Clarou Pierre, Huynh Nicolas, Fay de Lestrac Thibault, Stark Antoine, Ayanides Thibault, Boutillon Nathanaà«l, Defourné Timothée, Miras Cyril, Simon Corentin, Segretain Paul, Creusé Eulalie, Mirone Jules, Sellier François, Martinez Esteban, Mosseri Julia, Bertrand Jules, Vanel Julien, Michaud Lucie, Mercat Flora, Procope-Mamert Sylvain.

Seconde : élèves dont le score est supérieur ou égal à  21 ou dont le score bonifié est supérieur ou égal à  24 :
Kreczman Savinien, Hamdi Ilyes, Kahane Yakob, Anjolras Philippe, Panchaud Hugo, Kà¶nig Josie, Boitel Leo, Garçonnet Olivier, Gutsche Linda, Lesbats Rémi, Perrin Aymeric, Véron Julien, Zeitoun Sébastien, Destic Pablo, Cahuzac Aline, Buonomo Fanny.

Troisième : élèves dont le score est supérieur ou égal à  27 ou dont le score bonifié est supérieur ou égal à  34,3 :
Bazin Pierre-Alexandre, Polo Alexandre, Gehrke Mats, Serraille Baptiste, Olivier Hugo, Jampsin Julien, Arimont Nina, Léonard Arthur, Rosinsky Juraj.

Quatrième (et cinquième) : élèves dont le score est supérieur ou égal à  29 ou dont le score bonifié est supérieur ou égal à  33 :
Fougereux Théodore, Ayanides Pierre, Monteith-Pistor Alexander, Zablocki Jean, Hua Lucien, Pigé Xavier.

Enoncés et solutions : éliminatoires collégiens éliminatoires lycéens réponses au questionnaire éliminatoire énoncé du test du 2 juin corrigé .

Pour tout renseignement complémentaire : écrire à  olymp(at)animath(point)fr.


(Remerciements : la mise en place du test en ligne a été réalisée grà¢ce à  l’aide technique de France-ioi.)

Forum

Animath disposait d’un forum o๠chacun pouvait échanger sur diverses activités liées aux mathématiques. Il n’est actuellement plus actif mais nous espérons pouvoir le relancer un jour. En attendant, vous pouvez nous joindre via la rubrique Contact .